Page 334 - Bộ Đề Toán Luyện Thi THPT
P. 334

X—  xy +    = 4
          <=>
                     2
               log^íx^ + y^) = log4 2 + log^íxy)
                       -t-
                         .2
              X^ -  xy + y^ = 4           I x^ -  xy + y’^ = 4
          <=>                          o  •
                     2  ,  „ 2
              [log^íx^ +y^) = log4 (2 xy)  1 x^ + y2 = 2xy
                     2
               ( x - y r  =0     ix = y     lx = y
          <=>
              [x^ -  xy + y^ = 4   ịx^  = 4   \x  = ±2
          Vậy hệ đã cho có nghiệm (2; 2), (-2; -2).
          u 4. Đăt X =  -  => dx =  —rd t
                       t

           Khi X = 1   t = 1, khi X = 2   t =  —
                                             2

           T a c ó l=   J^ ^ 5 ^ d x =   -   jtv l+ tM t= --  j(l+ t')ỉd (l+ t')= --í— -2>/2
                     ' X           I            2  I                3^^  8

       Câu 5. Am là giao tuyến của hai mặt phẳng với các vectơ pháp tuyến là
               Hj  = (m;  1; -m ) và n 2   = (1; -m;  1).
           Do đó Am có vectơ chỉ phưcmg là:
                   = [(n^,    ] = (1  -  m^ -2m; -1  -  m^).
           Trục Oz có vectơ chỉ phương  k  = (0; 0;  1).

           Nếu gọi (Pm là góc giữa hai đường thẳng Am và Oz thì:
                        u„.k    __________ 1 + m^__________     1
               cos(ị)„ =
                        u„       ^/(l -    + 4m^ + (1 + m^)^   >/2

           Suy ra Ọm = 45°: không đổi.
           Điểm M(x; y; z) thuộc Am khi toạ độ của M là nghiệm của hệ:
               ímx + y -  mz -1  = 0
               [x -  my + z -  m = 0

           Khử z từ hệ phương trình, ta được phương trình:
           2mx + (1  -  m^)y -  1  -  m^ = 0.
           Đây là phương trình của mặt phẳng (ơm) chứa Am và song song với trục
           Oz.  Do đó, khoảng cách giữa Am và Oz bằng khoảng cách từ gốc 0(0; 0;
           0) thuộc Oz tới mp(arn).
                                               -1 -m ^             1 + m^
           Vây khoảng cách đó băng: dm =    I               =  ■              = 1
                                           y l4 m ^ + ạ -m ^ Ý    V m ^ 2 m '+ 1
           : không đổi.



       334 -BĐT-
   329   330   331   332   333   334   335   336   337   338   339