Page 360 - Bộ Đề Toán Luyện Thi THPT
P. 360
bán kính R
2
Gọi A (0 ;l)th ìT - l z - i | = AM.
Đường tròn (C) cắt Oy tại A(0;1) và cắt Ox tại B(1;0), vì AB là đường
kính nên T = I z - i I = AM bé nhất khi M s A z = i.
T = I z - i I = AM lớn nhất khi M s B <=> z = 1.
( 1 ? r 1 f 1
Cách khác: x - 4 + y - — = —
l 2 j ự 2) 2
( 1 Ỹ r 1 V
<=> ^ / 2 x - ^ + V2y--ị=r =1
1 >/2j I ^/2J
íõ _ A - ' í _ ^ ^
v 2 x — p= = sina x = —7=sina+ —
^ _ V2 2
Đặt < <=> ■<
__1 _ _ 1 1
v 2 y — ^ = cosa y = - 7=cosa + —
[ V2 i V2 2
Nên = I z - i p = I X + (y + 1 )i p = + (y - 1
__ f 1 . r 1 l f
= - 7=sina + — + —^ c o s a - —
,/9 9. -/9 9
1
1 + ^ = (sin a -co sa) = 1 + sin a - —
V2 4
b) Điều kiện: 2x > y > -1
Jy^-2xy + y -2 x + 2 = 0
[2 log2(2x - y) + 3 log2(y +1) = 4
[(y-2x)(y + 1 )^ -2
Biến đổi hệ;
[(y-2x)^(y + ự =16
í(y -2 x f(y + l f =4
Dođó-!''' ‘ suy ra y +1 = 4 nên y =3.
l(y-2x)^(y + l f =16
Giải tiếp ừên ta được nghiệm: (x; y) =
1 1 1 1
Câu 4. Ta có:
x^ - 2x^ + 1 ~ (x + l)^(x - 1)^ ~ 4 x -1 x+1
1 1__________2
4 (x-1)^ (x + 1)^ (x -l)(x + l)
1 1 1 _ í _____ Ị _ '
~ 4 (x-1)^ (x + 1)^ x + 1 x - 1
360 -BĐT-